AI Agent Development - Autonomous LLM Systems Expert
The Evolution of AI: From Chat to Agents We’re moving beyond simple Q&A chatbots to agentic AI—systems that can: Understand complex, multi-step tasks Plan a sequence of actions to achieve goals Execute those actions using tools and APIs Adapt when things don’t go as expected Learn from feedback and improve over time This is where the real value of AI lies—automation of complex knowledge work. My Agent Development Framework 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 from langgraph.graph import StateGraph, END from pydantic import BaseModel from typing import Literal class AgentState(BaseModel): task: str plan: list[str] = [] current_step: int = 0 results: dict = {} requires_human: bool = False def create_reliable_agent(): workflow = StateGraph(AgentState) # Nodes workflow.add_node("planner", plan_task) workflow.add_node("validator", validate_plan) workflow.add_node("executor", execute_step) workflow.add_node("checker", check_result) workflow.add_node("human_review", request_human_review) workflow.add_node("compiler", compile_results) # Edges with conditional routing workflow.add_edge("planner", "validator") workflow.add_conditional_edges( "validator", lambda s: "executor" if s.plan else "planner" ) workflow.add_conditional_edges( "checker", lambda s: "human_review" if s.requires_human else "executor" ) workflow.add_edge("executor", "checker") workflow.add_edge("human_review", "executor") return workflow.compile() Agent Patterns I Implement Pattern Use Case Example ReAct Reasoning + Acting Research agent that searches, reads, summarizes Plan-Execute Complex multi-step tasks Document processing pipeline Supervisor Multi-agent coordination Team of specialized analysts Human-in-the-Loop High-stakes decisions Financial approvals, legal review Reflexion Self-improvement Agent that learns from mistakes Tools and Integrations I build agents that can use: ...