DATABASE

Redis

Lightning-fast caching and real-time data for high-performance applications

6+ Years Experience
25+ Projects Delivered
Available for new projects

$ cat services.json

Caching Strategy

Design and implement caching to dramatically improve application performance.

Deliverables:
  • Cache key design
  • Invalidation strategies
  • TTL optimization
  • Cache warming
  • Performance benchmarking

Real-Time Systems

Build real-time features with Redis Pub/Sub and Streams.

Deliverables:
  • Pub/Sub implementation
  • Redis Streams processing
  • Real-time notifications
  • Event broadcasting
  • Consumer groups

Session & State Management

Implement fast, reliable session and state management.

Deliverables:
  • Session store implementation
  • Distributed locks
  • Rate limiting
  • Feature flags
  • Leaderboards and counters

$ man redis

Redis Data Structures I Use

Strings - Simple caching, counters Hashes - Object storage, session data Lists - Queues, activity feeds Sets - Unique collections, tags Sorted Sets - Leaderboards, time-series Streams - Event sourcing, message queues HyperLogLog - Unique visitor counting

Production Redis Patterns

Caching Patterns

  • Cache-aside with graceful fallback
  • Write-through for consistency
  • Cache warming on deployment

Reliability

  • Redis Sentinel for HA
  • Redis Cluster for scaling
  • Connection pooling
  • Circuit breakers

$ cat README.md

Redis Architecture Patterns

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import redis.asyncio as redis
from functools import wraps
import hashlib
import json

class CacheService:
    """Production-grade Redis caching service"""
    
    def __init__(self, redis_url: str):
        self.redis = redis.from_url(redis_url, decode_responses=True)
    
    async def get_or_compute(
        self, 
        key: str, 
        compute_fn, 
        ttl: int = 3600
    ):
        """Cache-aside pattern with graceful degradation"""
        try:
            cached = await self.redis.get(key)
            if cached:
                return json.loads(cached)
        except redis.RedisError:
            pass  # Fallback to compute
        
        result = await compute_fn()
        
        try:
            await self.redis.setex(
                key, 
                ttl, 
                json.dumps(result)
            )
        except redis.RedisError:
            pass  # Non-blocking cache write
        
        return result
    
    async def rate_limit(
        self, 
        key: str, 
        limit: int, 
        window: int
    ) -> bool:
        """Sliding window rate limiter"""
        now = time.time()
        pipe = self.redis.pipeline()
        
        pipe.zremrangebyscore(key, 0, now - window)
        pipe.zadd(key, {str(now): now})
        pipe.zcard(key)
        pipe.expire(key, window)
        
        _, _, count, _ = await pipe.execute()
        return count <= limit

Redis Use Cases

Use CaseData StructureExample
CachingString, HashAPI responses, user profiles
SessionsHashUser authentication data
Rate LimitingSorted SetAPI request limits
LeaderboardsSorted SetGame scores, rankings
Real-TimePub/SubNotifications, live updates
QueuesList, StreamJob processing, events
CountingHyperLogLogUnique visitors

Redis Deployment Options

OptionUse CasePros
StandaloneDev, small appsSimple
SentinelHA without shardingAutomatic failover
ClusterLarge scaleSharding, linear scaling
AWS ElastiCacheManaged AWSEasy ops
Redis CloudFully managedMulti-cloud

Experience:

Case Studies: Cannabis E-commerce Platform | LLM Email Assistant | Real-time EdTech Platform

Related Technologies: Python, PostgreSQL, Celery, FastAPI

$ ls -la projects/

LLM Response Caching

@ Flowrite
Challenge:

Reduce LLM API costs and latency for common email patterns.

Solution:

Redis caching with semantic similarity keys—similar prompts return cached responses. TTL-based invalidation.

Result:

Significant cost reduction and faster response times.

Real-Time Dispatch System

@ OPERR Technologies
Challenge:

Track vehicle locations and driver status in real-time for dispatch.

Solution:

Redis for location caching, Pub/Sub for status updates, sorted sets for proximity queries.

Result:

Sub-second dispatch updates for NYC NEMT operations.

Session Management

@ The Virtulab
Challenge:

Manage user sessions across microservices with low latency.

Solution:

Redis as centralized session store with hashes for session data and automatic TTL expiration.

Result:

Consistent authentication across services, sub-millisecond session lookups.

$ diff me competitors/

+ 6+ years of production Redis experience
+ High-performance patterns—not just basic caching
+ Real-time expertise—Pub/Sub, Streams, event-driven
+ AI application focus—LLM response caching, embedding storage
+ Full-stack integration—Redis with Python, Node.js, Java

Optimize Your Application

Within 24 hours