ARCHITECTURE

🐰 RabbitMQ

Reliable message queuing for microservices communication

5+ Years Experience
12+ Projects Delivered
βœ“ Available for new projects

$ cat services.json

RabbitMQ Implementation

Set up and configure RabbitMQ for your application.

Deliverables:
  • Exchange/queue design
  • Routing configuration
  • Dead letter handling
  • High availability setup
  • Monitoring integration

Message Patterns

Implement common messaging patterns with RabbitMQ.

Deliverables:
  • Work queues
  • Pub/sub fanout
  • Topic routing
  • RPC patterns
  • Priority queues

Celery + RabbitMQ

Set up Celery with RabbitMQ as the broker.

Deliverables:
  • Broker configuration
  • Task routing
  • Result backend
  • Monitoring
  • Scaling strategy

$ man rabbitmq

RabbitMQ vs Kafka

RabbitMQ - Traditional message queue

  • Best for: Request/reply, routing, lower throughput
  • Pros: Flexible routing, mature, easy to use
  • Cons: Lower throughput than Kafka

Kafka - Event streaming platform

  • Best for: High throughput, event sourcing, logs
  • Pros: Massive scale, replay capability
  • Cons: More complex, overkill for simple queues

RabbitMQ Patterns

Direct Exchange - Route by key Fanout Exchange - Broadcast to all Topic Exchange - Pattern matching Headers Exchange - Route by headers

Reliability patterns:

  • Acknowledgements
  • Publisher confirms
  • Dead letter queues
  • Message TTL

$ cat README.md

RabbitMQ Patterns

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import pika
from pika.exchange_type import ExchangeType

# Publisher
connection = pika.BlockingConnection(pika.ConnectionParameters('localhost'))
channel = connection.channel()

# Declare exchange and queue
channel.exchange_declare(
    exchange='events',
    exchange_type=ExchangeType.topic,
    durable=True
)

channel.queue_declare(queue='user_events', durable=True)
channel.queue_bind(
    exchange='events',
    queue='user_events',
    routing_key='user.*'
)

# Publish message with confirmation
channel.confirm_delivery()
channel.basic_publish(
    exchange='events',
    routing_key='user.created',
    body='{"user_id": "123"}',
    properties=pika.BasicProperties(
        delivery_mode=2,  # Persistent
        content_type='application/json'
    )
)

# Consumer with acknowledgements
def callback(ch, method, properties, body):
    try:
        process_message(body)
        ch.basic_ack(delivery_tag=method.delivery_tag)
    except Exception as e:
        ch.basic_nack(delivery_tag=method.delivery_tag, requeue=False)

channel.basic_consume(
    queue='user_events',
    on_message_callback=callback,
    auto_ack=False
)

RabbitMQ Architecture

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  Producer   │────▢│           RabbitMQ Broker           β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β”‚                                      β”‚
                    β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”      β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
                    β”‚  β”‚Exchange │─────▢│    Queue 1    β”‚ β”‚
                    β”‚  β”‚ (topic) β”‚      β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
                    β”‚  β”‚         β”‚      β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
                    β”‚  β”‚         │─────▢│    Queue 2    β”‚ β”‚
                    β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜      β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
                    β”‚                   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
                    β”‚                   β”‚  Dead Letter  β”‚ β”‚
                    β”‚                   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
                    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                                           β”‚
                    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
                    β–Ό                      β–Ό              β–Ό
             β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”          β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
             β”‚ Consumer β”‚          β”‚ Consumer β”‚   β”‚ Consumer β”‚
             β”‚    1     β”‚          β”‚    2     β”‚   β”‚    3     β”‚
             β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜          β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

$ ls -la projects/

Real-Time Event Processing

@ The Virtulab
Challenge:

Process real-time events from video sessions.

Solution:

RabbitMQ with topic exchanges for event routing, Celery workers for processing.

Result:

Reliable real-time event handling with proper error recovery.

IoT Data Pipeline

@ Spiio
Challenge:

Queue sensor data for async processing.

Solution:

RabbitMQ with work queues, Celery for processing, dead letter handling.

Result:

Scalable async processing of sensor data.

Email Processing Queue

@ Flowrite
Challenge:

Queue email generation requests for async processing.

Solution:

RabbitMQ as Celery broker, priority queues for premium users.

Result:

Smooth user experience, scalable processing.

$ diff me competitors/

+ 5+ years of production RabbitMQ experience
+ Both RabbitMQ and Kafka expertise
+ Celery integration specialist
+ HA and clustering experience
+ Monitoring and alerting setup

Build Your Message Queue

Within 24 hours