BACKEND

gRPC

High-performance RPC framework for microservices communication

4+ Years Experience
8+ Projects Delivered
Available Now

$ cat services.json

gRPC Service Design

Design efficient Protocol Buffer schemas and service definitions.

Deliverables:
  • Proto file design
  • Schema versioning strategy
  • Backward compatibility planning
  • Code generation setup
  • Documentation

gRPC Implementation

Build production-grade gRPC services in multiple languages.

Deliverables:
  • Python gRPC services
  • Node.js gRPC services
  • Java/Go implementations
  • Streaming patterns
  • Error handling

gRPC Infrastructure

Deploy and operate gRPC services at scale.

Deliverables:
  • Load balancing setup
  • Service mesh integration
  • Monitoring and tracing
  • Rate limiting
  • Circuit breakers

$ cat README.md

When to Choose gRPC

gRPC excels in these scenarios:

  • Microservices Communication: Internal service-to-service calls
  • Real-time Streaming: Live data feeds, chat, notifications
  • Mobile Backends: Efficient binary protocol saves bandwidth
  • Polyglot Systems: Services in different languages need to communicate
  • High-Throughput APIs: When REST/JSON becomes a bottleneck

gRPC vs REST: When to Use Which

AspectgRPCREST
PerformanceBinary, 10x fasterJSON, human-readable
TypingStrong (Proto)Weak (OpenAPI optional)
StreamingNative supportWorkarounds needed
BrowserNeeds gRPC-WebNative support
ToolingCode generationManual or codegen
Learning CurveSteeperGentler

My recommendation: Use gRPC for internal microservices, REST for public APIs. I can help you design hybrid architectures that leverage both.

Python gRPC Implementation

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import grpc
from concurrent import futures
from ai.inference.v1 import inference_pb2, inference_pb2_grpc

class InferenceServicer(inference_pb2_grpc.InferenceServiceServicer):
    def __init__(self, model_registry):
        self.models = model_registry

    async def Predict(self, request, context):
        model = self.models.get(request.model_id)
        if not model:
            context.abort(grpc.StatusCode.NOT_FOUND, "Model not found")
        
        scores = await model.predict(request.features)
        return inference_pb2.PredictResponse(
            prediction_id=str(uuid.uuid4()),
            scores=scores,
            label=model.decode_label(scores),
            confidence=max(scores),
        )

def serve():
    server = grpc.aio.server(futures.ThreadPoolExecutor(max_workers=10))
    inference_pb2_grpc.add_InferenceServiceServicer_to_server(
        InferenceServicer(model_registry), server
    )
    server.add_insecure_port('[::]:50051')
    server.start()
    server.wait_for_termination()

$ ls -la projects/

@ Flowrite
Challenge:

Solution:

Result:

@ Anaqua
Challenge:

Solution:

Result:

Ready to Get Started?

I typically respond within 24 hours