BACKEND

🥬 Celery

Reliable distributed task processing for Python applications

5+ Years Experience
15+ Projects Delivered
Available for new projects

$ cat services.json

Celery Implementation

Set up and configure Celery for your application.

Deliverables:
  • Broker selection (Redis, RabbitMQ)
  • Task design and implementation
  • Result backend configuration
  • Error handling and retries
  • Monitoring setup

Task Workflow Design

Design complex task workflows with Celery.

Deliverables:
  • Task chains and groups
  • Chord patterns
  • Priority queues
  • Rate limiting
  • Task routing

Celery Optimization

Optimize existing Celery deployments.

Deliverables:
  • Performance analysis
  • Worker tuning
  • Memory optimization
  • Concurrency configuration
  • Monitoring dashboards

$ man celery

Celery Architecture

Broker - Message transport (Redis, RabbitMQ) Workers - Task executors Result Backend - Store task results Beat - Scheduled task scheduler

Key patterns:

  • Chains: Sequential task execution
  • Groups: Parallel task execution
  • Chords: Group + callback
  • Retry: Automatic failure recovery

Celery Best Practices

My Celery implementations include:

  • Idempotent tasks for safe retries
  • Task timeouts to prevent hangs
  • Result expiration to manage storage
  • Priority queues for critical tasks
  • Dead letter queues for failed tasks
  • Monitoring with Flower or custom dashboards

$ cat README.md

Celery Task Patterns

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
from celery import Celery, chain, group, chord
from celery.exceptions import MaxRetriesExceededError

app = Celery('tasks', broker='redis://localhost:6379/0')

@app.task(bind=True, max_retries=3, default_retry_delay=60)
def process_document(self, document_id: str):
    """Process document with automatic retry."""
    try:
        document = get_document(document_id)
        result = analyze_document(document)
        save_result(document_id, result)
        return result
    except TransientError as e:
        raise self.retry(exc=e)
    except Exception as e:
        # Log and move to dead letter queue
        log_error(document_id, e)
        raise

@app.task
def send_notification(user_id: str, message: str):
    """Send notification after processing."""
    notify_user(user_id, message)

# Workflow: Process then notify
workflow = chain(
    process_document.s(doc_id),
    send_notification.s(user_id)
)

# Parallel processing with callback
parallel_workflow = chord(
    group(process_document.s(id) for id in doc_ids),
    aggregate_results.s()
)

Celery Configuration

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# celery_config.py
broker_url = 'redis://localhost:6379/0'
result_backend = 'redis://localhost:6379/1'

# Task settings
task_serializer = 'json'
result_serializer = 'json'
accept_content = ['json']
timezone = 'UTC'

# Retry settings
task_acks_late = True
task_reject_on_worker_lost = True

# Concurrency
worker_concurrency = 4
worker_prefetch_multiplier = 2

# Result expiration
result_expires = 3600  # 1 hour

# Task routing
task_routes = {
    'tasks.high_priority.*': {'queue': 'high'},
    'tasks.low_priority.*': {'queue': 'low'},
}

Experience:

Case Studies: AI Recruitment Platform | CRM Integration Platform

Related Technologies: Django, Python, Redis, PostgreSQL

$ ls -la projects/

LLM Processing Queue

@ Flowrite
Challenge:

Process async LLM requests without blocking the API.

Solution:

Celery with Redis broker, priority queues for premium users, result caching.

Result:

Scalable async processing, smooth user experience.

Data Processing Pipeline

@ PurpleSlate
Challenge:

Process venue data updates with email notifications.

Solution:

Celery task chains for data processing, email sending, and analytics updates.

Result:

Reliable background processing with full audit trail.

IoT Data Processing

@ Spiio
Challenge:

Process sensor data asynchronously at scale.

Solution:

Celery workers with specialized queues for different data types.

Result:

40,000+ data points processed hourly.

$ diff me competitors/

+ 5+ years of production Celery experience
+ AI/ML task processing expertise
+ Both Redis and RabbitMQ broker experience
+ Complex workflow patterns (chains, chords, groups)
+ Full monitoring and observability setup

Build Your Task Queue

Within 24 hours